
CME 307: Optimization Final (Project II)
Students: Casey Fleeter & Laura Lyman

Due on Monday 03/20/17

Background. Consider m distinct states that are mutually exclusive such that exactly
one of them will be true with time. Define a share contract of states to be a paper agree-
ment ensuring that a bet is worth $1 if the bet includes the winning state and is worth $0
otherwise. Players can bet on one or a combination of states. We refer to bidders as orders,
so the jth bidder is sometimes called the jth order. There are n bidders/orders total.

Let aj ∈ Rm denote the combination betting vector (a1j; · · · ; amj) chosen by the jth bidder,
where

akj =

{
1 if state k is included in order j’s betting vector

0 else.

Let qj ∈ R>0 be the maximum number of shares that the jth bidder requested, and let πj be
the price given to the jth bidder per share. Let xj be the number of shares actually awarded
to the jth order, meaning the jth bidder will pay πjxj. Consequently, the market maker
collects a total of

n∑
j=1

πjxj = πᵀx.

Now suppose state k is the winning state. Then each aj such that akj = 1 will be awarded
$1 per share, and the remaining orders win nothing. So the market maker needs to pay back
the total amount

n∑
j=1

akjxj = ak~x

where ak in this case is the kth row of matrix A. The goal of the market maker is then
to choose ~x ∈ Rn such that his/her profit is maximized. That is, the market maker needs
to pick how many shares xj to award to order j for all j ∈ {1, . . . ,m}. Now let z ∈ R>0

be the worst-case cost for the market maker, so the total worst-case profit is πᵀx − z. So
z = maxi ~ai~x. Then we want to maximize πᵀx − z (subject to certain constraints) so that
even in the worst-case the market maker has as much profit as possible.

We now introduce a slack variable s ∈ Rm. Let u(s) be a real-valued function for the market
on possible slack shares. Let A~x−~e ·z and x ≤ ~q be associated with dual/Lagrange variables
~p ∈ Rm

≥0 and s ∈ R≥0. In linear programs, ~p is interpreted as the state implicit prices (pk is
price for the kth state) and ~s is seen as the order implicit prices (that is, sj is how much
profit per share the marker makes can yield from the jth order). Note that if u(·) is strictly
concave, then the state price vector ~p is unique.

Suppose the kth order just arrived. Then in the online auction market, the problems at
hand are:

(SCPM) maxxk,s πk − z + u(s)

subject to aikxk − z + si = −
∑k−1

j=1 aijxj ∀ i ∈ {1, . . .m}
0 ≤ xk ≤ qk

(SLPM) maxx1,...,xk

∑k
j=1 πjxj − z

subject to
∑k

j=1 aijxj − z ≤ 0 ∀ i ∈ {1, . . .m}
0 ≤ xj ≤ qj ∀ j ∈ {1, . . . , k}

where xj for j ∈ {1, . . . , k − 1} is the vector of decisions made at previous steps (that
is, the vector of shares awarded to previous bidders).

First we implement both SCPM and SLPM for online prediction auctions as described in
Lecture Note # 9. For the SCPM, consider the utility functions

u1(s) =
w

m

m∑
i=1

log(si) and u2(s) =
w

m

m∑
i=1

(1− e−si)

for some fixed positive constant w ∈ [10,−4 1]. All online and offline auctions are run using
simulated bidding data with m = 10 and some ptrue > 0 as a grand truth price vector.

Q0 (Numerical): What are the performances of SCPM and SLPM both online and offline?
Does w make a difference? Does ~p→ ptrue, where ~p is the state price vector generated from
the online auction model and ptrue > 0 is the grand truth vector? Explain your observations
and findings.

Solution: As suggested, a sequence of random bids for k ∈ {1, . . . , 10, 000} is produced
by: (1) generating a vector ~ak whose entries are either 0 or 1 at random, (2) choosing a
random scalar qk ∈ [10, 20], and (3) letting πk = pTak+ randn(0,0.2), where randn(0,0.2) is
a Gaussian random variable with mean 0 and variance 0.2.

Below we plot the error (with w = 0.7601) from implementing Online SLPM and Online
SCPM for both utility functions u1 and u2. Error is defined as ‖ptrue − p‖2 where p is the
state price vector yielded from each method. The lefthand plot uses u1 and the righthand
plot uses u2; both have minimal variance in ~π (σ2 = 0.001). Noise will be added in later
examples.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration k

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N
or

m
of

E
rr

o
r
jjp

tr
u
e
!

p
kj

2

Online SLPM Error & SCPM Error in Price Vector Per Iteration: Function U1

Online SCPM Error
Online SLPM Error

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration k

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N
or

m
of

E
rr

o
r
jjp

tr
u
e
!

p
kj

2

Online SLPM Error & SCPM Error in Price Vector Per Iteration: Function U2

Online SCPM Error
Online SLPM Error

Figure 1: Error in state price vector for w = 0.7601 and utility functions u1 (left) and u2
(right) over 10,000 iterations via Online SLPM and Online SCPM with σ2 = 0.001.

2

Observe that p → ptrue in Online SCPM and Online SLPM for both utility functions over
n = 10, 000 iterations when there is little/no variance. SLPM converges slightly faster over
the iterations, though the difference is fairly minimal. The specific value of w did not seem
to make a dramatic difference. Below we show two plots with the same ptrue and σ2 = 0.001
but with a significantly smaller w value (w = 0.001 instead of 0.7601).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration k

0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
of

E
rr

o
r
jjp

tr
u
e
!

p
kj

2

Online SLPM Error & SCPM Error in Price Vector Per Iteration: Function U1

Online SCPM Error
Online SLPM Error

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration k

0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
of

E
rr

o
r
jjp

tr
u
e
!

p
kj

2

Online SLPM Error & SCPM Error in Price Vector Per Iteration: Function U2

Online SCPM Error
Online SLPM Error

Figure 2: Error in state price vector for w = 0.001 and utility functions u1 (left) and u2
(right) over 10,000 iterations via Online SLPM and Online SCPM with σ2 = 0.001.

As depicted, the convergence for SCPM is nearly identical in this case to its convergence when
there is a larger coefficient w. However, once noise is introduced, Online SLPM continues
to have p → ptrue while Online SCPM loses convergence to the correct solution. Below are
results over 10,000 bids for w = 0.7601 and σ2 = 0.2 variance.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration k

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

o
f
E
rr

o
r
jjp

tr
u
e
!

p
kj

2

Online SLPM Error & SCPM Error in Price Vector Per Iteration: Function U1

Online SCPM Error
Online SLPM Error

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration k

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

o
f
E
rr

o
r
jjp

tr
u
e
!

p
kj

2

Online SLPM Error & SCPM Error in Price Vector Per Iteration: Function U2

Online SCPM Error
Online SLPM Error

Figure 3: Noise added. Error in state price vector for w = 0.7601 and utility functions u1
(left) and u2 (right) over 10,000 iterations via Online SLPM and Online SCPM with σ2 = 0.2.

In the offline case, SLPM very accurately approximates ptrue within 10,000 iterations, even
with noise introduced (σ2 = 0.2, w = 0.7601 below).

3

Furthermore, Offline SCPM also converges to ptrue for n = 10, 000 (σ2 = 0.2, w = 0.7601)
for both the logarithmic and exponential utility functions, unlike in the online version.

When w was forced to be small in the offline case (w = 0.001), the error and objective
values were identical to those corresponding to a higher w value. So similar to the online
case, varying w did not seem to affect this convergence given so many bidders, even though
w theoretically could modulate the degree to which the market-maker is risk-averse (as
described in Q1 below).

Q1 (Theoretical): Dual prices may not be unique when solving the model. In order to get
a unique pice, people sometimes add another term to the objective function when solving
the model; one such model called CPCAM is defined as follows:

(CPCAM) maxxk,s

∑n
j=1 πjxj + u(s)

subject to
∑n

j=1 aijxj + si = bi ∀ i ∈ {1, . . .m}
0 ≤ xj ≤ 1 ∀ j ∈ {1, . . . , n}
si ≥ 0 ∀ i ∈ {1, . . . ,m}

where u(~s) is increasing and strictly concave. Write down the first-order KKT conditions
for optimality. Are they sufficient? Argue why the problem will have a unique price (that
is, the Lagrange multipliers on the m equality constraints of the problem). Assume that
∂u(·)
∂si
|si=0 ≥ 1 for all i ∈ {1, . . .m}. How would you interpret u(~s)?

Solution. First observe that the Lagrangian function is (when ignoring the multiplier for
the ~s ≥ 0 constraint)

L(x, s, λi, γj, γ
′
j) = πᵀx+ u(s)−

m∑
i=1

λi
(n∑

j=1

aijxj + si − bi
)

+
n∑

j=1

γj(xj − 1)−
n∑

j=1

γ′jxjj

where λi, γj, γ
′
j,≥ 0 are Lagrange multipliers encoding the constraints

∑n
j=1 aijxj + si =

bi, ~x ≤ 1, and ~x ≥ 0 respectively. Compute that

∂

∂xj
L(x, s) = πj −

m∑
i=1

λiaij + γj − γ′j for all j = 1, . . . , n

∂

∂si
L(x, s) =

∂

∂si
u(s)− λi = 0 for all i = 1, . . . ,m.

4

Then the KKT conditions enforce that (adding the complementary conditions)

πj −
m∑
i=1

λiaij + γj − γ′j = 0 (~s ≥ 0)

∂

∂si
u(s) = λi for i ∈ {1, . . . ,m}

λi
(n∑

j=1

aijxj + si − bi
)

= 0 for i ∈ {1, . . . ,m}

γj(xj − 1) = 0 for j ∈ {1, . . . , n}
γ′jxj = 0 for j ∈ {1, . . . , n}

λi, γj, γ
′
j ≥ 0 for all i, j∑

i

λi = 1 prices sum to 1.

Since −u(s) is strictly convex and −
∑n

j=1 πjxj is linear, their sum (the negative of the
objective function) is a convex function as well. By Lecture Notes # 6, the first-order KKT
condition are sufficient since the Hessian of the Lagrangian function is negative semidefinite
from the the objective function being convex. So a first-order KKT point will also be a
2nd-order KKT point.

Each multiplier λi (corresponding to the state prices) has the constraint λi = ∂u(s)
∂si

. Since

u(s) is strictly concave, it will have a unique maximum solution s∗ and thus so will ∂u(s∗)
∂si

.
Therefore, the λi are uniquely determined, meaning the problem has a unique price.

We interpret u(~s) as a disutility function (or penalty function) for the objective. Without
u(s), we are just maximizing the worst-case profit without considering how likely that sit-
uation might be. The penalty u(s) creates a distribution among the possible states, where
the market-maker can then adjust by the multiplier w depending on his attitude towards
risk. Therefore, u(s) represents a penalty function with some informative distribution that
allows the market-maker to potentially be less risk-averse, since we are not just analyzing
the worst-case profit scenario.

Q2 (Theoretical): The disadvantage of the call auction model is that it cannot inform
bidders whether or not their bids are accepted until the market closes. This is undesirable
since sometimes bidders want to know the results of their bids immediately so that they
can modify bids and submit again. In practice, the market is usually implemented in an
online version defined as follows. Consider solving the optimization problem whenever the
kth bidder submits a bid (for scalar xk and vector ~s):

maxxk,s πkxk + u(s)

subject to akxk + si = bi − qk−1i ∀ i ∈ {1, . . .m}
0 ≤ xk ≤ 1
si ≥ 0 ∀ i ∈ {1, . . . ,m}

5

where qk−1i =
∑k−1

j=1 aijxj represents the amount of i that is already allocated before the kth
bidder arrives. Note that only scalar xk and vector ~s are variables. Assume again that u(·)
is increasing and strictly concave. Write down the first-order KKT conditions, and argue
why this online problem may be solved efficiently when compared to the offline problem.

Solution: Solving for ~s yields si = bi−qk−1i −aikxk for all i. Substituting into the problem,
we have

maxxk,s πkxk + u(bi − qk−1i − aikxk) ∀ i ∈ {1, . . .m}
subject to 0 ≤ xk ≤ 1

bi − qk−1i − aikxk ≥ 0 ∀ i ∈ {1, . . . ,m}.

The Lagrangian for every i value is

L(xk, λi, µi) = πkxk + u(bi − qk−1i − aikxk)− λ1(xk − 1) + λ2xk −
m∑
i=1

µi(bi − qk−1i − aikxk)

where λ1, λ2, µi ≥ 0 are the Lagrange multipliers associated with the constraints xk ≤ 1, xk ≥
0 and ~s ≥ 0. Compute the gradient

∇xk
L(xk, s) = πk −

m∑
i=1

aiku
′(bi − qk−1i − aikxk)− λ1 + λ2 −

m∑
i=1

µiaik (λ1, λ2 ≥ 0).

The KKT conditions (adding the complementary conditions) are then

πk −
m∑
i=1

aiku
′(bi − qk−1i − aikxk)− λ1 + λ2 −

m∑
i=1

µiaikxk = 0 for i ∈ {1, . . . ,m}∑
i

u′(bi − qk−1i − aikxk) = 1 prices sum to 1

λ1(xk − 1) = 0 λ1, λ2, µi ≥ 0

λ2xk = 0
m∑
i=1

µiaik = 0.

The problem can be solved efficiently when compared to the offline problem, because the
method uses a near-closed form solution (as shown in Lecture Note #18) and therefore is
faster; in particular, it is not an iterative algorithm. The main idea of the online approach
is to ensure that we can accept/reject a bid as soon as we receive it without having to wait
for all bids (which is computationally expensive).

Q4 (Numerical): Now suppose there is a good estimate of the total n bidders in the
market. Then we wait for the first k bidders to arrive and solve the linear program

maxx1,...,xk

∑k
j=1 πixi

subject to
∑k

j=1 aijxj ≤
k
n
bi ∀ i ∈ {1, . . .m}

0 ≤ xkj ≤ 1 ∀ j ∈ {1, . . . k}.
6

Then using the dual prices (call them yk) of the partial LP, we have

xj =

{
1 if πj > aᵀjy

k

0 else.

Let n = 10, 000. We run the online SLPM algorithm using the same simulated bidding data
for k = 50, 100, 200 to judge sensitivity with respect to iteration.

Solution: For the resource allocation on 10,000 bids, let ~b = (1000, . . . , 1000).ᵀ The true
price vector ~ptrue was initialized as a random vector with entries 0 ≤ pi ≤ 1 such that∑m

i=1 pi = 1. We wait for the first k bids, then solve the SLPM problem to obtain the
optimal dual price p. The subsequent j > k bids are then accepted if their values are
sufficiently high (πj > aᵀjp) and resources are still available (aj ≤ b −

∑j−1
i=1 aixi). If k = n,

the pure Offline SLPM model is solved. We then have the following output (w = 0.812) for
the Online SLPM process:

As demonstrated, the error ‖ptrue − ~p‖ between the outputted price vector and ~p decreases
(though only very marginally) as k varies from 50 to 200, and the market maker’s profit
decreases incrementally as well. With each iteration, more information is incorporated into
determining p, and consequently error should decrease; however we see that within this range
of k values the differences in the computed price vector and the objective function value are
not dramatic. The standard Offline SLPM model produced a profit of $20.64 given the
parameters above. Therefore the online model essentially matches the offline standard by
iteration k = 200, which is quite efficient performance.

7

