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(1) Let µ be a Borel measure on [0, 1] with µ([0, 1]) = 1. Then there exists a compact
set K ⊆ [0, 1] such that µ(K) = 1 but µ(H) < 1 for any proper compact subset
H of K. We call K the support of µ. Then every compact subset of [0,1] is the
support of some Borel measure.

Proof. Let:

U =
⋃

µ(Ik)=0

Ik for Ik = (p, q) with p, q ∈ Q ∩ [0, 1].

Let K = U c ∩ [0, 1] so K ⊆ [0, 1] and µ(K) = 1− µ(U) = 1− 0 = 1. Note that K
is closed (since Kc = U ∪ [0, 1]c which is open) and bounded, so K is compact.

Consider H ( K such that H is compact. Let Ik be a rational interval contained
in K \ H. Suppose µ(Ik) = 0. Then Ik ⊆ U ⊆ (U ∪ [0, 1]c) = Kc, which is a
contradiction since Ik ⊆ K. Thus, µ(Ik) > 0. However, we then have that

µ(H) = 1− µ([0, 1] \H)

and since Ik ⊆ ([0, 1] \H), 0 < µ(Ik) ≤ µ([0, 1] \H). Hence, µ(H) < 1, as desired.
Now suppose K is an arbitrary compact subset of [0, 1] (i.e. not the carefully

constructed one above). We will show that K is the support of some Borel measure.
Since K is compact, K is separable; hence, K contains a countable dense subset

{kn}n∈N. Consider the Dirac measure δx(S) =

{
1 if x ∈ S
0 else.

Then for A ⊆ [0, 1]

we define a measure, as kindly suggested during office hours, by

µ(A) =

∞∑
n=1

1

2n
δkn(A).

First we show that this is indeed a measure. The largest µ(A) can be is if δkn(A) = 1
for all kn, in which case µ(A) =

∑∞
n=1

1
2n = 1 < ∞ (thus the measure is well-

defined). Clearly the measure is nonnegative and µ(∅) = 0. Now suppose A =
∪∞`=1A`. Then

µ(A) =

∞∑
n=1

1

2n
δkn(

∞⋃
`=1

A`) ≤
∞∑
n=1

1

2n
( ∞∑
`=1

δkn(A`)
)

=
∞∑
`=1

∞∑
n=1

1

2n
δkn(A`) =

∞∑
`=1

µ(A`)

where we used the fact that δkn(A) is a measure in the first inequality. Hence, µ is
a Borel measure.

Furthermore, µ(K) =
∑∞

n=1
1
2n = 1. Now suppose H ( K is compact. Then

some kn 6∈ H (see Lemma 1 ), meaning δkn(H) = 0 for that kn. Hence, µ(H) <∑∞
n=1

1
2n (1) = 1, as desired. Thus, K is the support of this measure. �

Lemma 1. Let K,H be compact subsets of [0, 1] with H ( K. Let {kn} be a
countable dense subset of K. Then kn 6∈ H for some n ∈ N.
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Proof. Suppose for contradiction that kn ∈ H for all n ∈ N. Let x ∈ K \H. Since
x ∈ K and {kn} is a dense subset of K, either some kn equals x or x is a limit
point of {kn}. Since each kn ∈ H and x 6∈ H, we have that x must be a limit point
of {kn}. However, since H is compact in R, H is closed and therefore contains all
of its limit points; thus x ∈ H. This is a contradiction. �

(2) Construct a function f such that each set {x : f(x) = α} is measurable for any
α ∈ R but {x : f(x) > 0} is not measurable.

Proof. First, we construct the Vitali set V ⊆ [0, 1], which is not measurable. Par-
tition [0,1] into a disjoint union of equivalence classes under the relation x ∼ y ⇔
x − y ∈ Q. (Note that this is possible since Q is a normal subgroup of R). Using
the Axiom of Choice, we can select a representative element from each equivalence
class and put these representatives into a set V .

Suppose V is measurable. Enumerate Q as {qi} and let

Uqi = qi/Z + V.

Then µ(Uqi) = µ(V ) by translation invariance. Furthermore, the Uqi are disjoint
because no two elements in V have a rational difference. Finally, ∪∞i=1Uqi = [0, 1].
However, observe that by countable subadditivity,

µ(
∞⋃
i=1

Uqi) =
∞∑
i=1

µ(Uqi) =
∞∑
i=1

µ(V ),

meaning
∑∞

i=1 µ(V ) = 1. If µ(V ) > 0, then 1 = ∞ and if µ(V ) = 0, then 1 = 0.
This is a contradiction. Thus, we have shown the existence of an unmeasurable
subset V of [0, 1].

Now define f : [0, 1] → R as

f(x) =

{
x if x ∈ V
−x if x 6∈ V

meaning that {x : f(x) = α} ⊆ {α,−α}. Since {x : f(x) = α} is contained in a
discrete set, {x : f(x) = α} is clearly measurable.

Now consider f−1(0,∞) and note that V c ∩ f−1(0,∞) = ∅. To see this, observe
that if x ∈ f−1(0,∞) then x ∈ (0, 1] and if also x ∈ V c then f(x) = −x. However,
−x < 0 so f(x) < 0; hence, x 6∈ f−1(0,∞) which is a contradiction.

Therefore, we have that f−1(0,∞) ⊆ V t V c but f−1(0,∞) ∩ V c = ∅, meaning
f−1(0,∞) ⊆ V . Since V ⊆ f−1(0,∞) as well, we have by mutual containment that
{x : f(x) > 0} = V , which is not measurable. �

(3) Construct a monotone function that is discontinuous on a dense set on [0, 1].

Proof. Enumerate Q as {qn}∞n=1. Let f : [0, 1] −→ R be a function such that:

f(x) =
∑
qn≤x

1

2n
.

Note that this does not assume the enumeration of the rationals preserves the
ordering of the reals (that is, this does not say that qm < qn ⇔ n < m). Since∑∞

n=1
1
2n is convergent, we have no convergence issues so f is well-defined. We now

show that f is monotone. Suppose x < y for x, y ∈ [0, 1]. Consider the interval (x, y)
and note that some qi ∈ (x, y). Thus, qi 6≤ x and qi ≤ y, so

∑
qn≤x

1
2n <

∑
qn≤y

1
2n .

Hence, f(x) < f(y) so f is strictly monotone increasing.
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We now show that f is discontinuous on Q ∩ [0, 1], meaning f is discontinuous
on a dense set in [0, 1]. Let xk = qn − (1/2)k so {xk} → qn from below; let the
sequence indexing begin at k large enough such that xk ∈ [0, 1] (so f(xk) is defined).
Since xk < qn for all k and f is strictly monotone increasing, f(xk) < f(qn).
Therefore, lim

k→∞
f(xk) < lim

k→∞
f(qn) = f(qn), meaning f is not continuous at qn.

(Really, letting {xk} be any sequence in [0,1] approaching qn from below without
ever reaching qn would have been sufficient). Since qn ∈ Q was arbitrary, f is
discontinuous on Q ∩ [0, 1]. �

(4) Let φ be a non-negative continuous function on Rn such that
∫
φ = 1. Given t > 0,

define φt(x) = t−nφ(x/t). Then if g ∈ C∞(Rn) with compact support,

φt(g) =

∫
Rn

φt(x)g(x)dx −→ g(0).

As a result, φt is called an approximation of identity. How much can you weaken
the regularity assumptions on φ and g?

Proof. Letting y = xt, we have by a change of variables that∫
Rn

φt(x)dx =

∫
Rn

φt(y/t)t
ndy =

∫
Rn

φ(y)t−ntndy =

∫
Rn

φ(y)dy.

Since
∫
Rn φ(y)dy = 1, we have that

∫
Rn φt(x)dx = 1 as well. Thus,∣∣ ∫

Rn

φt(x)g(x)dx− g(0)
∣∣ =

∣∣ ∫
Rn

φt(x)g(x)dx−
∫
Rn

φt(x)g(0)dx
∣∣

=
∣∣ ∫

Rn

φt(x)(g(x)− g(0))dx
∣∣

≤
∫
Rn

|φt(x)||g(x)− g(0)|dx

=

∫
Rn

φt(x)|g(x)− g(0)|dx [since φ nonnegative ⇒ φt nonnegative]

=

∫
Rn

φ(x)|g(xt)− g(0)|dx [changing variables x→ xt]

Let M = sup
x∈Rn

|g(x)|, which exists since g ∈ C∞(Rn) with compact support. Then

φ(x)|g(tx)− g(0)| ≤ φ(x)(|g(tx)|+ |g(0)|) ≤ φ(x)(2M)

meaning φ(x)|g(tx) − g(0)| is dominated by an integrable function. Furthermore,
since g is continuous at zero, lim

t→0
(g(xt) − g(0)) = 0. Thus, by the Dominated

Convergence theorem,

lim
t→0

∫
Rn

φ(x)|g(tx)− g(0)|dx =

∫
Rn

lim
t→0

φ(x)|g(tx)− g(0)|dx =

∫
Rn

φ(x)(0)dx = 0.

Hence, we have that as t→ 0,
∫
Rn φt(x)g(x)dx→ 0 as desired.

We can weaken several of the conditions. We require that φ is nonnegative and∫
φ = 1 (φ does not need to be continuous). In addition, we just need g to be

bounded and continuous at zero (we do not need g ∈ C∞(Rn) with compact sup-
port). �
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(5) Let Ek be a sequence of measurable sets such that
∞∑
k=1

µ(Ek) <∞.

Then almost all x lie in at most finitely many of the sets Ek.

Proof. Let V be the set of all x such that x lies in infinitely many of the Ek. That
is,

V =

∞⋂
n=1

∞⋃
k=n

Ek.

Let An =
⋃∞
k=nEk and note that A1 ⊇ A2 ⊇ · · · is a sequence of nested sets. By

Proposition 1.31 in the notes,

µ(V ) = lim
n→∞

µ(An) = lim
n→∞

µ(

∞⋃
k=n

Ek)

≤ lim
n→∞

∞∑
k=n

µ(Ek) = lim
n→∞

(

∞∑
k=1

µ(Ek)−
n−1∑
k=1

µ(Ek))

= (
∞∑
k=1

µ(Ek)−
∞∑
k=1

µ(Ek)) = 0.

Thus, V has measure zero. Note that V c is the set of all x contained in at most
finitely many of the Ek. Thus, almost all x are contained in at most finitely many
of the Ek. �


