REAL ANALYSIS: HOMEWORK 2

LAURA LYMAN

(1) Let p be a Borel measure on [0, 1] with ([0, 1]) = 1. Then there exists a compact
set K C [0,1] such that u(K) = 1 but u(H) < 1 for any proper compact subset
H of K. We call K the support of p. Then every compact subset of [0,1] is the
support of some Borel measure.

Proof. Let:

U= U I, for I, = (p, q) with p,q € QN [0, 1].

Let K =U°N[0,1] so K C [0,1] and u(K) =1—pu(U) =1—-0= 1. Note that K
is closed (since K¢ = U U [0, 1] which is open) and bounded, so K is compact.
Consider H C K such that H is compact. Let I be a rational interval contained
in K\ H. Suppose u(Iy) = 0. Then I;, C U C (UU|[0,1]¢) = K¢, which is a
contradiction since I C K. Thus, u(I) > 0. However, we then have that

p(H) =1 —p(0,1]\ H)

and since I, C ([0,1] \ H), 0 < p(Ig) < u([0,1] \ H). Hence, u(H) < 1, as desired.

Now suppose K is an arbitrary compact subset of [0,1] (i.e. not the carefully
constructed one above). We will show that K is the support of some Borel measure.
Since K is compact, K is separable; hence, K contains a countable dense subset

lifzeS

{kn}nen. Consider the Dirac measure d,(S) =
0 else.

Then for A C [0, 1]

we define a measure, as kindly suggested during office hours, by

=3 bk (4)

First we show that this is indeed a measure The largest p1(A) can beisif o, (A) =1
for all ky, in which case u(4) = Yo%, 5= = 1 < oo (thus the measure is well-
defined). Clearly the measure is nonnegative and p(f)) = 0. Now suppose A =
U;ilAf' Then

W)=Y L, UAe )< ol zékn (40) = 35" L6, (40 = Yl
= n=1 = /=1

n—l Klnl

where we used the fact that Jx, (A) is a measure in the first inequality. Hence, p is
a Borel measure.

Furthermore, pu(K) = > 07, 2% = 1. Now suppose H C K is compact. Then
some k, ¢ H (see Lemma 1), meaning 0 (H) = 0 for that k,. Hence, u(H) <
Yoy 2in(l) =1, as desired. Thus, K is the support of this measure. O

Lemma 1. Let K, H be compact subsets of [0,1] with H C K. Let {k,} be a
countable dense subset of K. Then k,, ¢ H for some n € N.
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Proof. Suppose for contradiction that k, € H for all n € N. Let z € K \ H. Since
z € K and {k,} is a dense subset of K, either some k,, equals z or z is a limit
point of {ky}. Since each k,, € H and x ¢ H, we have that = must be a limit point
of {k,}. However, since H is compact in R, H is closed and therefore contains all
of its limit points; thus x € H. This is a contradiction. ]

Construct a function f such that each set {z : f(x) = a} is measurable for any
a € R but {z: f(x) > 0} is not measurable.

Proof. First, we construct the Vitali set V' C [0, 1], which is not measurable. Par-
tition [0,1] into a disjoint union of equivalence classes under the relation z ~ y <
x —y € Q. (Note that this is possible since Q is a normal subgroup of R). Using
the Axiom of Choice, we can select a representative element from each equivalence
class and put these representatives into a set V.

Suppose V' is measurable. Enumerate Q as {¢;} and let

qu = Qi/ Z+V.
Then p(Uy,) = p(V) by translation invariance. Furthermore, the Uy, are disjoint
because no two elements in V' have a rational difference. Finally, U2, U, = [0, 1].

However, observe that by countable subadditivity,

p(JUg) =D u(Uy) = u(v),
=1 =1 =1

meaning » ., pu(V) = 1. If u(V) > 0, then 1 = oo and if (V) = 0, then 1 = 0.
This is a contradiction. Thus, we have shown the existence of an unmeasurable
subset V' of [0, 1].

Now define f:[0,1] — R as

zifzeV
f(x):{—xifxg_ﬂ/

meaning that {z : f(z) = a} C {a,—a}. Since {z : f(z) = a} is contained in a
discrete set, {x : f(z) = a} is clearly measurable.

Now consider f~1(0,00) and note that V¢N f~1(0,00) = ). To see this, observe
that if z € f71(0,00) then z € (0,1] and if also x € V¢ then f(x) = —z. However,
—x < 0so f(z) <0; hence, x & f~1(0,00) which is a contradiction.

Therefore, we have that f~1(0,00) C VU V¢ but f~1(0,00) N V¢ = (), meaning
f71(0,00) C V. Since V C f~1(0,00) as well, we have by mutual containment that
{z: f(z) > 0} =V, which is not measurable. O

Construct a monotone function that is discontinuous on a dense set on [0, 1].

Proof. Enumerate Q as {g,}5° ;. Let f:[0,1] — R be a function such that:

1

f(z) = on’

gn<x

Note that this does mot assume the enumeration of the rationals preserves the
ordering of the reals (that is, this does not say that ¢, < ¢, < n < m). Since
S 2% is convergent, we have no convergence issues so f is well-defined. We now
show that f is monotone. Suppose z < y for z,y € [0, 1]. Consider the interval (z,y)
and note that some ¢; € (z,y). Thus, ¢; £ v and ¢; <y,s0 >, . 2% <D<y 2%

Hence, f(z) < f(y) so f is strictly monotone increasing.
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We now show that f is discontinuous on Q N [0, 1], meaning f is discontinuous
on a dense set in [0,1]. Let 2 = g, — (1/2)* so {zx} — ¢, from below; let the
sequence indexing begin at k large enough such that z, € [0,1] (so f(x) is defined).
Since xp < ¢, for all k and f is strictly monotone increasing, f(zx) < f(gqn).
Therefore, klln;o flzr) < kli)n;o f(gn) = f(qn), meaning f is not continuous at g,.

(Really, letting {x;} be any sequence in [0,1] approaching ¢, from below without
ever reaching ¢, would have been sufficient). Since ¢, € Q was arbitrary, f is
discontinuous on Q N [0, 1]. O

(4) Let ¢ be a non-negative continuous function on R™ such that [¢ = 1. Given ¢t > 0,
define ¢y(x) =t "¢(x/t). Then if g € C*>°(R™) with compact support,

¢i(g) = [ du(x)g(x)dz — g(0).
R’ﬂ
As a result, ¢y is called an approzimation of identity. How much can you weaken
the regularity assumptions on ¢ and g7

Proof. Letting y = xt, we have by a change of variables that
Pe(x)de = | ¢u(y/t)t"dy = | oyt "t"dy = | $(y)dy.
R™ R™ R™ R™
Since [pn ¢(y)dy = 1, we have that [, ¢i(x)dz =1 as well. Thus,
[ owg@rts =g = | [ awg@)iz = [ a0z
R™ R R”
— | [ nta)gla) - 9(0))ds]
R’ﬂ
< [ a@lgle) -~ g(0)lda
= o1(x)|g(z) — g(0)|dz [since ¢ nonnegative = ¢; nonnegative]
Rn

= o(x)|g(xt) — g(0)|dx [changing variables x — xt]

Rn

Let M = sup |g(z)|, which exists since g € C*°(R"™) with compact support. Then
TERM

¢(@)lg(tr) — g(0)] < ¢(x)(|lg(tx)| + |g(0)]) < o(2)(2M)
meaning ¢(z)|g(tz) — g(0)| is dominated by an integrable function. Furthermore,
since ¢ is continuous at zero, 7}inf(l](g(act) — ¢g(0)) = 0. Thus, by the Dominated
—
Convergence theorem,

lim [ ¢(x)|g(tz) — g(0)|dr = /Rn lim ¢(z)|g(tz) — g(0)|dz = - ¢(z)(0)dx = 0.

t—0 R™

Hence, we have that as ¢ = 0, [p. ¢¢(2)g(2)dz — 0 as desired.

We can weaken several of the conditions. We require that ¢ is nonnegative and
J ¢ =1 (¢ does not need to be continuous). In addition, we just need g to be
bounded and continuous at zero (we do not need g € C*(R"™) with compact sup-
port). O
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(5) Let Ej be a sequence of measurable sets such that

ZN(ER) < 0.
k=1

Then almost all z lie in at most finitely many of the sets Ey.

Proof. Let V be the set of all x such that x lies in infinitely many of the Ej. That
is,

Let A,, = Uz, Ex and note that A; D Ay D --- is a sequence of nested sets. By
Proposition 1.31 in the notes,

[e.9]

p(V) = lim p(Ag) = ggrgou(kL_J E)
0 [e’s) n—1
- . -
< nlinéo;“(E’“) 7}3}0(;#(&) ;N(Ek))

= O_u(E) =D u(Ey) =0.
k=1 k=1

Thus, V has measure zero. Note that V¢ is the set of all x contained in at most
finitely many of the Ej. Thus, almost all  are contained in at most finitely many
of the Fj. ]



